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Abstract-The solutions of the Stefan problem, as applied to solidification and freezing-are usually 
based on the assumption of instantaneous contact of liquid with the cooling surface. In fact the liquid 
to be solidified on the walls is introduced into the channel or cavity, and a blockade of flow due to 
complete solidification in a certain cross-section is always possible. This problem is analysed in the 

present paper. 

NOME~CLA~RE 

thermal diffusivity of the solid phase; 
half-width of the channel; 
friction factor; 
dimensionless length of the casting; 
length of the casting: 
characteristic length; 
mass of the casting; 
pressure drop; 
radius; 
time; 
freezing constant; 
volume; 
velocity; 
co-ordinate; 
thickness of the solidified layer; 
dimensionless time. 

Creek symbols 

Z 

constant, equation (2.11); 
dimensionless variable; 

H viscosity; 

PIP’, densities of the solid and liquid phases, 
respectively; 

2, time; 

90, dimensionless variable; 
w. dimensionless velocity. 

1. INTRODUCTION 

THE SOLUTIONS of the Stefan problems, connected 
with solidification and freezing, which may be found in 
the literature (e.g. [i]), are based as a rule on the 
assumption of instantaneous contact of liquid with the 
cooling surface (or mould). This assumption might be 
justified only in such cases where the solidification 
process is much slower than the process of flow, and 
this is usually not true. As a matter of fact the liquid 
to be solidified freezes on the walls of the cooling 
surface while flowing through the channel, and a 
blockade of flow due to complete solidification in a 
certain cross-section is always possible. To analyze 
such a situation the solutions of the corresponding 
Stefan problem must be known. That is, if the walls of 
the channel are flat, one must have ready solution of 

the Stefan problem for a flat wall in which the instan- 
taneous contact of all the surface with the solidifying 
liquid is assumed. For such cases the thickness of the 
solidified layer is given by 

Y = U J(at’), (1.1) 

where U is a freezing constant satisfying a certain 
trans~ndent equation, a is the thermal diffusivity of 
the solidified layer, and t’ denotes time counted from 
the moment of instantaneous contact. Thus the 
equation (1.1) can be utilized for all two-dimensional 
cases with flat walls. In the case of a round tube the 
relation (1.1) is not true, but a similar solution exists [23. 

The solution of the type (1.1) offers thus the basis for 
a more efaborate analysis of the solidification during 
the flow of liquid. 

2. TWO-DIMENSIONAL CASE OF A CAVITY 

WITH FLAT WALLS 

In Fig. 1 a sketch of the geometry to be analyzed 
is given. It is assumed that the angle dt is sufficiently 
small, therefore it is approximately ho = SO, and b = s. 

layer 

FIG. 1. 
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The position of the liquid front is given by r(t) = x. 
The thickness of the solidified layer J$X, r) may be 
calculated with the help of the relationship (1.1) in 
which t’ is replaced by 

t’ = r - 5, (2.1) 

where t is the actual time, and r the time at which the 
liquid front has reached the place x. Thus we have 

l(t) = x (2.2) 

Ykf) = U&u@-r,]. i2.3) 

an arbitrary reference length without changing the 
symbols in (2.10--12). Thus we have 

C&).(1-J:)=f‘Q)+e 
I 

‘ff(~)--di_ (3.1) 
0 J(=-0’ 

Let us consider the case of constant inlet velocity, 
w = const. The solution ,f’(z) may be quite easily ob- 
tained by means of the subsequent-approximations 
technique, which is quickly convergent due to small 
values of the parameter c. Starting from the first 
approximation 

(3.2) 

At the entrance, x = 0, it is of course we arrive in two steps at the third approximation 

y(0, f) = u&t) = yo. (2*4) 
Let uscalculate the volume of the solidified layer taking 
into account one half of the cavity and unit depth of it; 
namely 

1 

V(t) = s s Jjdx = ;$$&z(t-r)]dr. 
(2.5) which may be used as the final result. Integration yields 

0 fi(z) = 0X(1-&/z) (3.4) 
For the considered geometry the filled volume is equal and 
to 

s 1 

K(t) = 
bof2 

b(xfdx = bol---, (2.6) 
0 2L 

since +;c’-(l-T8cJi) . 1 (3.5) 

b(x) = bo - bo(x/L). (2.7) 
The entrance is closed bv the solidified layer when 

Let p denote the density of the solid, and p‘ that of I+, = b, i.e. for z = 1. Hen& 
liquid. The mass of substance supplied to the cavity 
is then h (1) = (fJ/3, (3.61 

1 
f 

m = pV+p’(V,- V) = w(t)p’(bo -UC,) dt, (2.8) 
&(l)=;(1-1.6437e+2.1991r:z). (3.7) 

JO 

where w(t) denotes the inlet velocity of liquid. 
The quantity E is usually sufficiently small, e.g. for tin 

Substituting (2.5-6) into (2.8), introducing the dimen- 
it is E = 0.02111, whencef3( I) = 0.3221w, which differs 

sionless variables 
from the first approximation f;(l) = wi3 by -3.5%. 
For water E = -0.0415, hence fa(1) = 0.3573w, and 

(2.9) 
thus the error is -t-6.7%. It is felt that in many cases 
the first approximation is sufficient, which means that 

and rearranging we arrive at an integral Volterra 
usually E = 0 may be put. 

equation of the second kind 
The case of constant inlet velocity is less realistic 

than the case of constant pressure drop Ap. However 

(2.10) 
it seems very difficult to determine the latter. For the 
sake of simplicity let us assume an analogous routine 

where 
for determination of the pressure drop as in straight 
channels of constant cross-section, namely 

(gz) = biw(z) 
aLU2 ’ 

&z!L 
2p’ ’ 

(2.11) Cf 1 psw2 
Ap=---.- 

bo-vo 2 ’ 
(3.8) 

and 

f’(z) = !g!. 
where cl is the friction factor being in general a function 

(2.12) 
of the Reynolds number assumed thus 

(Re) = 
Q’w(bo --JO) 

Ll ’ 
(3.9) 

3. SPECIAL CASE OF A FLAT SLIT 

In this particular case it is L = CC with regard to the 
where p is the viscosity. We will consider two limiting 

sketch in Fig. 1. Therefore in the equation (2.10) the 
cases, the first of laminar flow, when 

term (1 -f) should be replaced by 1; after this operation 
L cancels out in w andf’, so that one can take for L 

24 
c, = (Re) 1 (3.10) 
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and the second of the highly developed turbulent flow 
with cf = const. In the first case we have 
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Hence 

cp = 1- J[l-2co[(1-: Jc)]. (4.2) 

The condition of the blockade may be specified thus 

y = 6, (4.3) 
or and in the second 

I-Jz 
o(z)= 02 - J( > f 

The first approximations of the function f (1) are given 
by the following formulae: for laminar flow 

f(l) = Jh/% (3.13) 

and for turbulent flow 

f(l) = (1h2/35)2’3. (3.14) 

Hence the maximum length of the casting I,,, may be 
calculated. For the constant velocity case 

1 
b;w 

max = ~ ; (3.15) 

for laminar flow 

I,,, = 0.2582; AP 

J( > 
- ; 
P 

(3.16) 

and for turbulent flow 

1 msx = 0.6l72$(&,$ (3.17) 

On comparing the above formulae the reference 
velocity for the case of constant pressure drop may be 
calculated thus: for laminar flow 

w = 0.7746U a& J( > _ ; (3.18) 
P 

and for turbulent flow 

(3.19) 

4 FILLING OF THE CAVITIES 

If the angle tl = 0 (see Fig. 1) then the blockade of 
flow occurs always at the entrance. This is also possible 
in the case of a > 0, but sometimes the blockade may 
take place inside the cavity (Fig. 2b). To analyse this 
problem we will use only the first approximation of 
the solution f(z), on putting E = 0 in (2.10). Let us 
consider first the case of constant velocity w = const. 
Then 

f = I-- J[I-hz(l-: Jz)]. (4.1) 

FIG. 2. 

uJ[u(t-t)] = bo(l-;). 

With use of (2.9) we obtain 

J(z-[) = I-~. 

Substituting (4.2) yields 

Jb-i) = J[1-wl-: Jo]. 

(4.4) 

(4.5) 

(4.6) 

A supplementary condition for the blockade inside the 
cavity is evidently 

dy db bo __=-= -_ 
dx dx L ’ (4.7) 

or, with use of (2.9), 

$ J(z-c)= -1. 

Hence 

dq 1 
_- 

d5 - 2(1-q) 

(4.8) 

at the place of the blockade. Substituting (4.2) and 
solving for i we obtain 

[= 1-t 2, ( > (4.10) 

whence 

.=1-J[l-3(o+l)(l-~JJ, (4.11) 

and 

(4.12) 

The function cp determines the place of blockade, and 
z the time of the event. The length of the casting I = Lf 
is determined by (4.1) and (4.2) thus 

f=l- J{ 1-24!J+:(1-2o)2 l-h 
( > 

+:“[l+:(l-2~)(l-~~]*~. (4.13) 

Note that when 2u < 1 the blockade occurs at the 
entrance, and in this case 

r = 0, cp = 0, z = 1, f = I- J(l-&TO). (4.14) 

If the cavity is properly degassed it can be filled com- 
pletely if o > 1.8346. The latter value is the solution 
of (4.13) for f = 1. Thus we have the following results: 
blockade at the entrance for 0 < w < 0.5; blockade 
within the cavity for 0.5 < w < 1.8346; complete filling 
of the cavity for w > 1.8346 (proper degassing 
provided). 



A similar analysis may be performed for the two 
cases of constant pressure drop. In result it has been 
found that the complete filling of the cavity is not 
possible. For laminar flow we have obtained fmax = 
0.8800 at z = 0.2441; the place of blockade is deter- 
mined by cp = 0.7500 at WI = 1.9882. For turbulent 
flow it is fmaX = 0.9570, z = 0.3466, q = 0.8333, 
02 = 1.5886. 

In result the following integral equation is obtained 

ru(z)$(z) = f“(zf+2& 
s 

‘~(~)~(~-~)d~, (5.7) 
0 

where 

5. ROUND HOLE and 

We will consider now a round hole (mould) of 
radius R into which liquid to be solidified is introduced 
(Fig. 3). Contrary to the preceding analysis y(x) now 
denotes the local radius of the liquid column, and 
,ve = y(O). To solve the problem the solution of the 

f’(-_) = “g!, It/‘@) = d?, $(z) = 1 -P(z). (5.9) 

Let us consider the case of constant velocity w = const 
with restriction to the first approximation, E = 0. We 
have thus 

Yo 

FIG. 3. 

analogous Stefan problem must be known, in which 
liquid is introduced into the mould instantaneously, 
and the thickness of the solidified layer is constant, 
i.e. y(x) = yo. The solution of this problem was given 
in [2] in the form 

where U is calculated as for the Bat mould, and the 
coefficients Al, AZ, . . depend among others upon U 
[2]. Using the new variables 

aU2t aUZt 
z=-, <=- 

4 
R2 R2 ’ 

ai = - 
LTi+l’ (5.2) 

we make use of the function 

F(z)= l-((Jz)--a~z--aZz”-... . 

Evidently 

(5.3) 

yo = RF(z), y = R&z-[). (5.4) 

We can now calculate the volume of the solidified fayer 

s 

1 
V(t) = n(R’--y’)dx (5.5) 

0 

and the mass introduced into the mould 

m = p’nR*I+ (p-p’,V(r) 

= ~~(t)p’~(R2-,&dr. 

and herreef can be easily calculated once the coef- 
ficients CX~ are known. For the case of flow of sodium 
in a stainless steel tube it has been found by the method 
given in [2] that U = 0.5654, CI~ = 0.5388, and other 
coefficients ai are sufficiently small to be neglected. 
Hence it has been obtained z = 0.5190 and f = 
0.3326J(ui). For turbulent flow the result was f = 
0.4526~$‘~ for the blockade, where 

(5.6) 
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R’w(t) 
w(z) = - 

P-P’ 

aLU2 ’ &=2p”’ 
(5.8) 

fo~~z.~_1-2a1Z2_~f13~_~~3_ 
3 b .... 

(5.10) 
(0 2 

The blockade occurs in this case only at the entrance 
when ~3~ = 0 or 

F(z)=O= I-(Jz)-Xlz-... . (5.11) 

Knowing the coefficients ai we can find the actual value 
of the dimensionless time z from (5.14), and hence 
calculate the maximum value off from (5.10). For a 
special case ai = 0.4, ai = 0 for i > 2 we have obtained 
z = 0.5861 andf = 0.4529 from the first approximation. 
The second approximation has been also calculated 
with the result 

,f’ = (0.4529-0.4754s)o. (5.12) 

Thus for tin with E = 0.02111 the error committed was 
- 2.296, and for water with E = - 0.0415 the error was 
+4.4q,. 

The same analysis can be performed for the cases of 
constant pressure drop. In this case it is assumed 

AI, = ; c&s’ (5.13) 

with cf = const for turbulent flow, and 

lip = xpuiw/y; (5.14) 

for laminar flow. In the latter case the first approxi- 
mationf(z) fulfils the equation 

where 

df [l-(Jz)-alz-...]2 
-. = 

Wl lll(Z)~ 
_.- 

dz f * u.15) 

(5.16) 

R2 
cl)2 = _ 

aLU’\ ,.,I I 

(5.17) 
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6. INFLUENCE OF THE FLUCTUATIONS OF FLOW 

The flow of liquid may be subject to fluctuations 
of various origin. To study their effect the equation 
(3.1) will be used with E = 0 (first approximation). Let 
us assume 

w(z) = G(l-asinvz), (6.1) 

where a is the amplitude, and v the frequency of the 
oscillations. Solving (3.1) forfwe obtain 

z(l-Zjz)+F(l-cosvz) 

-al:Jzsinvzdz]. (6.2) 

In this case the blockade occurs at the entrance, and 
hence z = 1 for the event. The maximum reduced length 
of the casting is therefore 

f(l)=~[~+~(l-&l:Jzsinvzdz)], (6.3) 

or 

The function 

f(l) = WC&+ax(v)]. (6.4) 

is given in Table 1. It exhibits a maximum for 
v = ca. 3.3, where xrnal = 0.1995. Thus there is a certain 
frequency 

VZ 3.3 aU2 v*=-_=-._ 
2m 27r b; ’ (6.6) 

SO that al = -a2 = a, then 

3aU2L,,1 
Eb; 

= 1+ 3ax(v), 

3oU2kx,2 
(6.8) 

= 1 - u’bij 3aX(v), 

and thus in the case of x = xrnax = 0.1995 it is 

1 max. 2 l-0.5985 

1 max. 1 1 + 0.5985a ’ (6.9) 

This characterizes the non-uniformity of liquid dis- 

tribution. 

7. CONCLUSIONS 

Discussion of the model used 
The problems of solidification are very often solved 

with the assumption of instantaneous contact of the 
whole cooling surface with the solidifying liquid. In 
fact the processes of filling and of solidification may 
occur at a commensurable rate. As a consequence the 
blockade of channels occurs. In this paper the problem 
is reduced to the solution of integral Volterra equations 
of the second kind. If the densities of the phases 
involved do not differ very much the first approxi- 
mation is usually quite sufficient to describe the 
phenomenon. The following geometries have been 
taken into account: two-dimensional enclosure with 
flat walls; flat slit; and round tube. Three cases of flow 
have been considered, namely that of constant velocity, 
and those of constant pressure drop at laminar or 
turbulent flow. 

The presented theory is based on the assumption 
that heat conduction in the direction of liquid flow, 
in the mould as well as in the solidified layer, can 
be neglected. If this were true, the use of one-dimen- 
sional freezing law in two-dimensional cases would be 

Table 1 

v 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 
x(v) 0 0.0200 0.038 1 0.0574 0.0764 0.0945 0.1115 0.1272 
XL 0.1416 1.6 0.1545 1.8 0.1658 2.0 0.1755 2.2 2.4 0.1835 0.1899 2.6 2.8 0.1946 0.1977 3.0 

V 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 
x(v) 0.1933 0.1994 0.1982 0.1957 0.1921 0.1876 0.1823 0.1763 
x;Y, 4.8 0.1698 0.1630 5.0 0.1561 5.2 0.1490 5.4 0.1420 5.6 0.1353 5.8 6.0 0.1288 0.1226 6.2 

XL 0.1169 6.4 0.1117 6.6 0.1070 6.8 0.1029 7.0 0.0992 7.2 0.0961 7.4 0.0935 7.6 0.0913 7.8 

xx, 0.0895 8.0 0.088 8.2 1 0.0870 8.4 0.0862 8.6 0.0856 8.8 0.0850 9.0 0.0846 9.2 9.4 0.0842 

XL 9.6 0.0837 0.0832 9.8 10.0 0.0826 10.2 0.0819 10.4 0.08 11 10.6 0.0801 10.8 0.0790 11.0 0.0778 

at which there is the greatest influence of the flow justified. In fact, if the walls of the mould are kept at 
fluctuations. In this case constant temperature, the curvature of the isotherms 

f(1) = $= $$. (1+0.5985a). 
in the solidified layer is the greatest near the liquid 

(6.7) front, and namely there the basic assumption is not 
completely fulfilled. Contrariwise, far from the liquid 

In particular for sodium flowing in stainless steel front the basic assumption seems to be justified. In the 
channels we have U = 0.5654, a = 6.69 x lo-’ m2 s-r, case of an uncooled semi-infinite mould the situation 
e.g. for b. = 2.5 x 10m3 m it is v* = 1.797~~‘. is quite analogous. In such a mould in one-dimen- 

If there are two parallel channels subject to sional cases the temperature at the walls assumes 
oscillations with equal amplitudes but different phases instantaneously a constant value during the contact 
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with the freezing liquid. Therefore the heat flux in the 
direction of flow at the liquid front must be expected. 
The influence of these phenomena is obscure at the 
moment; anyway the presented solution may be used 
as a first approximation for the whole process, and 
may be also the starting point for more sophisticated 
analysis. 

tn practical use of the presented theory one must 
be aware that the times of processes in moulds of 
constant cross-section are independent of the velocity 
of liquid supply, e.g. from Sections 2 and 3 it follows 
that for the first approximation in the case of a flat 

slit it is for the moment of the blockade z = 1,f = o/3 
at constant velocity. Hence one obtains the length of 
the casting I = wt/3, where t = (b@)‘/u is the time 
of the freezing process at the inlet. Thus to obtain 
great lengths of the casting one must create sufficiently 
great supply velocities. 
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PHENOMENE DE SOLIDIFICATION DANS L’ECOULEMENT EN 
CONDUITE ET DANS DES CAVITES 

R&um&-Les solutions du problitme de Stefan, appliqubes g la solidification et & la congtlation sont 
ginCralement basks sur une hypothtse de contact instantant du liquide avecla surface de refroidissement. 
En rCr&tt le liquide 8 solidi6er sur les parois doit ttre introduit dans ie canal ou dans la cavitb et une 
obstruction d&e B la solidification compl&e dans une section est toujours possible. Ce problBme est 

analyst dans le prtsent article. 

DER ERSTARRUNGSVORGANG BEI STROMUNGEN IN KAN;ILEN UND 
RALJHIGKEITSVERTIEFUNGEN 

Zusammenfassuog-Die Liisungen des Stefan-Problems, wie sie auf Erstarrungs- und Gefrierprobleme 
angewandt werden, basieren gewijhnlich auf der Annahme eines sofortigen Kontaktes der Fliissigkeit 
mit der KiihlflHche. Tatsiichlich wird die erstarrende Fliissigkeit in einen Kanal oder eine Rauhig- 
keitsvertiefung eingefiihrt und es ist immer eine Blockierung der St&mung infolge vollstiindiger 
Erstarrung in einem bestimmten Querschnitt miiglich. Dieses Problem wird in der vorliegenden Arbeit 

untersucht. 

3ATBEPfiEBAH:IE I-IPM TEYEHHH YEPE3 KAHAJIbI M: B IIOJIOCT5iX 

&~OT~IUI~ - Pememie 3aAWni CTe@aHa, wcnoJWyer+ible AJIR 3aTBepAesaHHa H 3aMep3aHHn, o6brrHo 
OCHOBaHbl Ha ITpeAnOJIO~eHIWi 0 Ml”HOBeHHOM KOIiTaKTe YHAKOCTH C OXJliWAaOMO8 nOBepXHOCTbl0 
B AetiCTBHTWlbHOCTH XCHAKOCTb, 3aTBepAeBaloIAaB Ha CTeHKaX, nOAaeTCK II KaHaJl HJIH nOJIOCTb H 
BU?rAa HMeeTCR BO’JMOX(HOCTb 6JIOKHpOWUiHX Te’leHBII BCJleACTBWe nOJIHOI.0 3aTBepAeBaHHSi B He- 

KOTOPOM nonepeYaoM CeYeHHn. AanHaR 3aAaqa HCcneAyeTCB B HacToaLueti CTaTbe. 


