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SOLIDIFICATION IN FLOW THROUGH CHANNELS
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Abstract—The solutions of the Stefan problem, as applied to solidification and freezing—are usually

based on the assumption of instantaneous contact of liquid with the cooling surface. In fact the liquid

to be solidified on the walls is introduced into the channel or cavity, and a blockade of flow due to

complete solidification in a certain cross-section is always possible. This problem is analysed in the
present paper.

NOMENCLATURE
a, thermal diffusivity of the solid phase;
b, half-width of the channel;
cr, friction factor;
£, dimensionless length of the casting;
A length of the casting;:
L, characteristic length;
m, mass of the casting;
Ap,  pressure drop;
R, radius;
t, time;
U, freezing constant;
¥, volume;
w, velocity;
X, co-ordinate;
A thickness of the solidified layer;
z, dimensionless time.
Greek symbols
g, constant, equation {2.11);
{, dimensionless variable;
i, viscosity;
p,p', densities of the solid and liquid phases,
respectively;
1, time;
®, dimensionless variable;

w, dimensionless velocity.

1. INTRODUCTION

THE SOLUTIONS of the Stefan problems, connected
with solidification and freezing, which may be found in
the literature (e.g. [1]), are based as a rule on the
assumption of instantaneous contact of liquid with the
cooling surface {or mould). This assumption might be
justified only in such cases where the solidification
process is much slower than the process of flow, and
this is usually not true. As a matter of fact the liquid
to be solidified freezes on the walls of the cooling
surface while flowing through the channel, and a
blockade of flow due to complete solidification in a
certain cross-section is always possible. To analyze
such a situation the solutions of the corresponding
Stefan problem must be known. That is, if the walls of
the channel are flat, one must have ready solution of

the Stefan problem for a flat wall in which the instan-
taneous contact of all the surface with the solidifying
liquid is assumed. For such cases the thickness of the
solidified layer is given by

¥y =U/(ar),

where U is a freezing constant satisfying a certain
transcendent equation, a is the thermal diffusivity of
the solidified layer, and ¢’ denotes time counted from
the moment of instantaneous contact. Thus the
equation (1.1) can be utilized for all two-dimensional
cases with flat walls. In the case of a round tube the
relation (1.1)is not true, but a similar solution exists [2].
The solution of the type {1.1} offers thus the basis for
a more elaborate analysis of the solidification during
the flow of liquid.

(1.1)

2. TWO-DIMENSIONAL CASE OF A CAVITY
WITH FLAT WALLS
In Fig. 1 a sketch of the geometry to be analyzed
is given. It is assumed that the angle « is sufficiently
small, therefore it is approximately by = sq, and b = 5.
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The position of the liquid front is given by [{t) = x.
The thickness of the solidified layer y(x,t) may be
calculated with the help of the relationship (1.1} in

which t' is replaced by
f=t—r1, 2.1

where ¢ is the actual time, and 7 the time at which the
liquid front has reached the place x. Thus we have

{t)=x (2.2)
and
yix, 0= U[alt—1)]. {2.3)
At the entrance, x = 0, it is of course
»0,0) = U {/(at) = yo. (24)

Let us calculate the volume of the solidified layer taking
into account one half of the cavity and unit depth of it;
namely

1 ‘
V(f)=J' ‘de=J\ d%QU\/[a(t-—t)]dr.

0 o a1

(2.5)

For the considered geometry the filled volume is equal
to

1% 1b dx = bol bol? 26
(1) = (x}dx = by TR (2.6}

0
since

b(x) = bg —bo(x/L). @7

Let p denote the density of the solid, and p’ that of
liquid. The mass of substance supplied to the cavity
is then

t

m=pV+p(Ve—V)= L w(t)p'(bo — yo) dt,

(2.8)

where w(t) denotes the inlet velocity of liquid.
Substituting (2.5-6) into (2.8), introducing the dimen-
sionless variables
al?t
b5’
and rearranging we arrive at an integral Volterra
equation of the second kind

I x alU%
f—“lj. (P—Z~ Z= b(z) B

{= 29

2 d¢
w(Z)'(1~\/Z)=f'(2)'(1—f)+6j FA(s] - (2.10)
0 V=0
where
_biwi) _p=y
&){Z)—W, & == “‘i;),—, (211)
and
fliz =dv{i(jzz. (2.12)

3. SPECIAL CASE OF A FLAT SLIT
In this particular case it is L = oo with regard to the
sketch in Fig. 1. Therefore in the equation (2.10) the
term (1 — f) should be replaced by 1: after this operation
L cancels out in « and f7, so that one can take for L
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an arbitrary reference length without changing the
symbols in (2.10--12). Thus we have
T d‘;’
o(z) (1—2) =f’(:)+z:j O~ (3D
v of V=0
Let us consider the case of constant inlet velocity,
@ = const. The solution f{z) may be quite easily ob-
tained by means of the subsequent-approximations
technique, which is quickly convergent due to small
values of the parameter ¢ Starting from the first
approximation

Fz) = w(t—/2)

we arrive in two steps at the third approximation

fila) = w[l—«wz) - 26\/:(1 ..g ¢>

32)

+e*nz(l —-%J:}], (3.3

which may be used as the final result. Integration yields
fi2) = wz(1-3/2) (3.4

and
2 4 3r
fi{D) =wz| 1-3(J2)~%e/z I"TEV/Z
TC 2
+-§6'3(1—1—85\/2):]. (3.5)

The entrance is closed by the solidified layer when
yo = b, ie. for z = 1. Hence

A= w/3, (3.6)

£l = %(1— 164376+2191).  (3.7)
The quantity ¢ is usually sufficiently small, e.g. for tin
itis ¢ = 0.02111, whence f3{1) = 0.3221, which differs
from the first approximation f1(1) = /3 by —3.5%.
For water ¢ = —0.0415, hence f3(1) = 0.3573¢, and
thus the error is +6.7%. It is felt that in many cases
the first approximation is sufficient, which means that
usually £ = 0 may be put.

The case of constant inlet velocity is less realistic
than the case of constant pressure drop Ap. However
it seems very difficult to determine the latter, For the
sake of simplicity let us assume an analogous routine
for determination of the pressure drop as in straight
channels of constant cross-section, namely

Cfl P'WZ

Ap =
p bo—yo 2

(3.8)

where ¢, is the friction factor being in general a function
of the Reynolds number assumed thus
4p'wibo~— yo)

Iz ’
where 1 is the viscosity. We will consider two limiting
cases, the first of laminar flow, when

B 24
“ = (Re)’

{Re)= 3.9

{3.10)
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and the second of the highly developed turbulent flow
with ¢, = const. In the first case we have
(-2 b§Ap

o(z) = wy - 7 > =W’

(3.11)

1

and in the second

- 1-yz\ b3 [(2boAp
w(Z)—wz\/(“T>, wz—aLUz\/(cfp'L) (3.12)

The first approximations of the function f{1) are given
by the following formulae: for laminar flow

1) = J(@,/5), (3.13)
and for turbulent flow
(1) = (12m,/35)*3. (3.14)

Hence the maximum length of the casting /., may be
calculated. For the constant velocity case

biw )
lmax"i;i'ji’ (315)
for laminar flow
b3 /A
e = 0.2582 22 (-”) ; (3.16)
Uv\pa
and for turbulent flow
b3 Ap 3
lnax = 06172 —| —5—— ] . 3.17
U (Cfazbo Up') ( )

On comparing the above formulae the reference
velocity for the case of constant pressure drop may be
calculated thus: for laminar flow

A
w = 0.7746U \/ (ﬂ>; (3.18)
u
and for turbulent flow
UaAp\}
w= 1.8517( 2 p> . (3.19)
Cfbop

4. FILLING OF THE CAVITIES

If the angle « = O (see Fig. 1) then the blockade of
flow occurs always at the entrance. This is also possible
in the case of a > 0, but sometimes the blockade may
take place inside the cavity (Fig. 2b). To analyse this
problem we will use only the first approximation of
the solution f(z), on putting ¢ =0 in (2.10). Let us
consider first the case of constant velocity @ = const.
Then

f=1~J[1-20z(1-3/2)]. @.1)

FiG. 2.
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Hence

o =1-J[1-2((1-3/0]. (4.2)
The condition of the blockade may be specified thus

y=b, 4.3)
or
Uyla(t—1)] = bo (1 - %) . (4.4)
With use of (2.9) we obtain
Jez=0=1-g. (4.5)
Substituting (4.2) yields
V=0 =J[1-20((1-30)]. (4.6)

A supplementary condition for the blockade inside the
cavity is evidently

dy db bo
e @7
or, with use of (2.9),
d
a\/(z—C)= -1 (4.8)
Hence
do 1
ETE et

at the place of the blockade. Substituting (4.2) and
solving for { we obtain

1 2
2
<p=1—\/[1—§(w+1)<1——21;) ] @.11)

1 2
z= 1+§(1—2w)(1—£> .

(4.10)

whence

and

(4.12)

The function ¢ determines the place of blockade, and
z the time of the event. The length of the casting | = Lf
is determined by (4.1) and (4.2) thus

f=1—\/{1~2w+§(1—2w)2<1—i)
2w
274
+%w[1+§(1——2w)<1—51a—)> :| } 4.13)

Note that when 2w < 1 the blockade occurs at the
entrance, and in this case

(=0, =0, z=1, f=1-/(I—-3%w). 414

If the cavity is properly degassed it can be filled com-
pletely if w > 1.8346. The latter value is the solution
of (4.13) for f = 1. Thus we have the following results:
blockade at the entrance for 0 < w < 0.5; blockade
within the cavity for 0.5 < » < 1.8346; complete filling
of the cavity for w > 1.8346 (proper degassing
provided).
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A similar analysis may be performed for the two
cases of constant pressure drop. In result it has been
found that the complete filling of the cavity is not
possible. For laminar flow we have obtained fn.. =
0.8800 at z = 0.2441: the place of blockade is deter-
mined by ¢ = 0.7500 at w; = 1.9882. For turbulent
flow it is fou = 09570, z=03466, ¢ = (0.8333,
w2 = 1.5886.

5., ROUND HOLE

We will consider now a round hole {mould) of
radius R into which liquid to be solidified is introduced
(Fig. 3). Contrary to the preceding analysis y(x} now
denotes the local radius of the liquid column, and
vo = ¥(0). To solve the problem the solution of the
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analogous Stefan problem must be known, in which
liquid is introduced into the mould instantaneously,
and the thickness of the solidified layer is constant,
ie. y{x} = yo. The solution of this problem was given
in [2] in the form

{at’ at’ at’\}
y0=R[1—U\XK(RE)—AIE-ZM—Az(F) —} (5.1)

where U is calculated as for the flat mould, and the
coefficients 4, 4, ... depend among others upon U
[2]. Using the new variables

aU?t aU?t ;
z= T (= R “i=U£+1’ (5.2)
we make use of the function
Fizy=1—(J2)—oyz—opz¥ —. .. (5.3)
Evidently
Yo =RF(z), y=RF(@z—{). (54)

We can now calculate the volume of the solidified layer

1
V() = J 7(R* ~3?)dx (5.5
0
and the mass introduced into the mould
m=p'nR+ (p—p" V(1)
1
= J wit)p'n(R? — v3)dt. (5.6)
23
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In result the following integral equation is obtained

wlzWlz) = =)+ ZSj' W E-0dl 5.7)
0

where
Rw)  p—p
w(z)= dLU% &= _——Zp' = (5.8)
and
df(z dyr(z
f)= "{1( ) . .pf(;):igﬁ, (z)=1-F¥z). (59
z z

Let us consider the case of constant velocity w = const
with restriction to the first approximation, s = 0. We
have thus

10 g

1-2&1 251
22 —%a; =
w 2

PR B
z7 -

(5.10

The blockade occurs in this case only at the entrance
when yo = 0 or

Flo)=0=1—(Jo)—a1z~.... (5.11)

Knowing the coefficients «; we can find the actual value
of the dimensionless time z from (5.14), and hence
calculate the maximum value of f from (5.10). For a
special case a; = 0.4, o; = 0 for i > 2 we have obtained
z = 0.5861 and f = 0.4529 from the first approximation.
The second approximation has been also calculated
with the result

f=1{04529-04754¢e)w. (512

Thus for tin with & = 0.02111 the error committed was
—2.2%, and for water with ¢ = —0.0415 the error was
+4.4%,.

The same analysis can be performed for the cases of
constant pressure drop. In this case it is assumed

{ 2
Ap = —cpp'w” {5.13)
Yo
with ¢y = const for turbulent flow, and
Ap = Bulw/vé (5.14)

for laminar flow. In the latter case the first approxi-
mation f(z) fulfils the equation

d l—(Jz)=arz—...]°
aé—zwnﬁ(z)v[ J f‘ o osas)
where
_ R*Ap
@ = W, (5.16)

and hence f(z) can be easily calculated once the coef-
ficients «; are known. For the case of flow of sodium
in a stainless steel tube it has been found by the method
given in [2] that U = 0.5654, o; = 0.5388, and other
coefficients «; are sufficiently small to be neglected.
Hence it has been obtained z=05190 and f =
0.3326 /(). For turbulent flow the result was f =
0.4526%? for the blockade, where

R < Rap (5.17
P2 =Lt erp’L) A7



Solidification in flow through channels

6. INFLUENCE OF THE FLUCTUATIONS OF FLOW

The flow of liquid may be subject to fluctuations
of various origin. To study their effect the equation
(3.1) will be used with & = 0 (first approximation). Let
us assume

w(z) = @(1 —asinvz), (6.1)

where o is the amplitude, and v the frequency of the
oscillations. Solving (3.1) for f we obtain

fla)= 65|:Z(1—§\/z)+%(1—cos vz)

—a fz Jzsinvz dz} . (6.2)

¢

In this case the blockade occurs at the entrance, and
hence z = 1 for the event. The maximum reduced length
of the casting is therefore

f(1)=a')[%+%<1 57 j \/zsmvzdz>:|, (6.3)

or

S = a3 +ax(v)]. (6.4)

The function

1 1 ‘cosu
=3 (13 |, o)

is given in Table 1. It exhibits a maximum for
v = ca.3.3, where ymax = 0.1995. Thus there is a certain
frequency

(6.5)
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so that ¢y = —o; = a, then
3aU pax 1
———— = 1+ 3ay(v),
wb§ 68)
30U  nax2 _ | 3ay) '
wh ’
and thus in the case of § = ymax = 0.1995 it is
Imax,2 _ 1—-0.5985 . 69
Imax,1  14+0.59854 '

This characterizes the non-uniformity of liquid dis-
tribution.

7. CONCLUSIONS

Discussion of the model used

The problems of solidification are very often solved
with the assumption of instantaneous contact of the
whole cooling surface with the solidifying liquid. In
fact the processes of filling and of solidification may
occur at a commensurable rate. As a consequence the
blockade of channels occurs. In this paper the problem
is reduced to the solution of integral Volterra equations
of the second kind. If the densities of the phases
involved do not differ very much the first approxi-
mation is usually quite sufficient to describe the
phenomenon. The following geometries have been
taken into account: two-dimensional enclosure with
flat walls; flat slit; and round tube. Three cases of flow
have been considered, namely that of constant velocity,
and those of constant pressure drop at laminar or
turbulent flow.

The presented theory is based on the assumption
that heat conduction in the direction of liquid flow,
in the mould as well as in the solidified layer, can

v = ¥z _ B .a_UZ (6.6) be neglected. If this were true, the use of one-dimen-
2nt 2z b3’ ’ sional freezing law in two-dimensional cases would be
Table 1
v 0 0.2 0.4 0.6 0.8 10 1.2 14
(v) 0 0.0200 0.0381 0.0574 0.0764 0.0945 0.1115 0.1272
v 1.6 1.8 20 2.2 24 2.6 2.8 3.0
x(v) 0.1416 0.1545 0.1658 0.1755 0.1835 0.1899 0.1946 0.1977
v 32 34 3.6 38 4.0 42 44 4.6
x(v) 0.1933 0.1994 0.1982 0.1957 0.1921 0.1876 0.1823 0.1763
v 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2
x(v) 0.1698 0.1630 0.1561 0.1490 0.1420 0.1353 0.1288 0.1226
v 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8
x(v) 0.1169 0.1117 0.1070 0.1029 0.0992 0.0961 0.0935 0.0913
v 8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4
x(v) 0.0895 0.0881 0.0870 0.0862 0.0856 0.0850 0.0846 0.0842
v 9.6 9.8 10.0 10.2 104 10.6 10.8 11.0
x(v) 0.0837 0.0832 0.0826 0.0819 0.0811 0.0801 0.0790 0.0778

at which there is the greatest influence of the flow
fluctuations. In this case

max b

L 3a LU2

In particular for sodium flowing in stainless steel
channels we have U = 0.5654, a = 6.69 x 10~ Sm2s~!,
eg forbyg=25x10"3mitis v* = 1.797s L.

If there are two parallel channels subject to
oscillations with equal amplitudes but different phases

)=

-(140.59850). 6.7

justified. In fact, if the walls of the mould are kept at
constant temperature, the curvature of the isotherms
in the solidified layer is the greatest near the liquid
front, and namely there the basic assumption is not
completely fulfilled. Contrariwise, far from the liquid
front the basic assumption seems to be justified. In the
case of an uncooled semi-infinite mould the situation
is quite analogous. In such a mould in one-dimen-
sional cases the temperature at the walls assumes
instantaneously a constant value during the contact
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with the freezing liquid. Therefore the heat flux in the
direction of flow at the liquid front must be expected.
The influence of these phenomena is obscure at the
moment; anyway the presented solution may be used
as a first approximation for the whole process, and
may be also the starting point for more sophisticated
analysis.

In practical use of the presented theory one must
be aware that the times of processes in moulds of
constant cross-section are independent of the velocity
of liquid supply, e.g. from Sections 2 and 3 it follows
that for the first approximation in the case of a flat
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slit it is for the moment of the blockade z = 1, f = w/3
at constant velocity. Hence one obtains the length of
the casting | = wt/3, where t = (bo/U)*/a is the time
of the freezing process at the inlet. Thus to obtain
great lengths of the casting one must create sufficiently
great supply velocities.
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PHENOMENE DE SOLIDIFICATION DANS L'ECOULEMENT EN
CONDUITE ET DANS DES CAVITES

Résameé—Les solutions du probléme de Stefan, appliquées a la solidification et & la congélation sont

généralement basées sur une hypothése de contact instantané du liquide avecla surface de refroidissement.

En réalité le liquide 4 solidifier sur les parois doit &tre introduit dans le canal ou dans la cavité et une

obstruction dfie 4 la solidification compléte dans une section est toujours possible. Ce probleme est
analysé dans le présent article.

DER ERSTARRUNGSVORGANG BEI STROMUNGEN IN KANALEN UND
RAUHIGKEITSVERTIEFUNGEN

Zusammenfassung— Die Losungen des Stefan-Problems, wie sie auf Erstarrungs- und Gefrierprobleme

angewandt werden, basieren gewdhnlich auf der Annahme eines sofortigen Kontaktes der Fliissigkeit

mit der Kiihlfliche. Tatsdchlich wird die erstarrende Fliissigkeit in einen Kanal oder eine Rauhig-

keitsvertiefung eingefithrt und es ist immer eine Blockierung der Stromung infolge vollstindiger

Erstarrung in einem bestimmten Querschnitt moglich. Dieses Problem wird in der vorliegenden Arbeit
untersucht.

3ATBEPOEBAHME INPY TEMEHMH YEPE3 KAHAJIBI U B ITOJIOCTAX

Ammoraims — Pewmenue 3anayu Credana, HCNOJMb3yeMble IS 3aTBEPACBAHAA H 3aMEP3aHHA, OOBIMHO
OCHOBaHbI Ha MPEANOJIOKEHHH 0 MIHOBEHHOM KOHTAKTe KHUAKOCTH C OXNAKIAEMON NOBEPXHOCTLIO
B NeHCTBHTENBLHOCTH XHAKOCTh, 3ATBEPACBAIOINAN HA CTEHKAX, HOJAETCH B KAHAN MM MOJIOCTh H
BCEIla HMEETCA BO3MOXKHOCTE OIOKMPOBAHHA TEYEHHs BCJIEOCTBHE IIOJHOI'O 3aTBEDAEBAHHS B He-
KOTOPOM TIONEPEYHOM ceueHny. [laHnas 3ana4a HCcneNyeTcs B HACTOALLeH cTaThe.



